Using a generated SuperSig, predict on a new dataset and return predicted probabilities for each observation.
predict_signature(object, newdata, factor)
object | an object of class |
---|---|
newdata | a data frame of mutations containing columns for
|
factor | the factor/exposure (e.g. "age", "smoking") |
predict_signature
returns the original data frame with
additional columns for the feature counts and classification score
#> sample_id age chromosome position ref alt #> 1 1 50 chr1 94447621 G C #> 2 1 50 chr2 202005395 A C #> 3 1 50 chr7 20784978 T A #> 4 1 50 chr7 87179255 C G #> 5 1 50 chr19 1059712 G T #> 6 2 55 chr1 76226977 T Cinput_dt <- make_matrix(example_dt) # convert to correct format input_dt$IndVar <- c(1, 1, 1, 0, 0) # add IndVar column out <- get_signature(data = input_dt, factor = "Age") # get SuperSig#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>newdata <- predict_signature(out, newdata = input_dt, factor = "age") suppressPackageStartupMessages({library(dplyr)}) head(newdata %>% select(score))#> # A tibble: 5 x 1 #> score #> <dbl> #> 1 0.6 #> 2 0.6 #> 3 0.6 #> 4 0.6 #> 5 0.6